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Quantitative measurement of roughness of 
fractured rubber surfaces by an image processing 
technique 
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In this paper, an image processing technique has been employed to quantitatively analyse 
various fractured surfaces of rubber and measure roughness. The image surfaces are 
represented in terms of a closed set of orthogonal polynomials. The significant orthogonal 
effects are measured and combined to represent the local texture, called pronum. The 
frequency of occurrence of the pronums is the prospectrum, a global descriptor. A few 
statistical parameters have been calculated from the prospectrum and correlated to the 
roughness of the fractured surfaces. Using the image processing technique, the laborious 
procedure involved in quantification, especially of irregular microfeatures, has been shown 
to be overcome. 

1. Introduction 
Fracture of rubber generates typical surfaces, which 
provide information on deformation, crack initiation, 
crack deviation, crack propagation, etc. In earlier stud- 
ies, the morphology of a large number of fracture 
surfaces has been reported [1 14]. These describe 
mechanism of fracture of rubber under a variety of 
conditions. For example, Thomas and Greensmith 
[1-3] discussed rough or irregular surface in natural 
rubber and styrene-butadiene rubber at low rates of 
crack growth with a transition to smoother 
appearances at higher velocities. Carbon-black-filled 
vulcanizates show tear tip deviation, branching of crack 
tip, etc., as compared to gum samples, showing 
smoother tear lines propagating from one end to 
another [4]. The abrasion patterns obtained with 
stronger and Weaker rubbers are clearly distinguishable 
[6]. Bhowmick and coworkers revealed the mechanism 
of fracture of a few rubbers and thermoplastic 
elastomers from the micrographs [8-12]. Bhowmick 
and De summarized this information for rubber in 
a recent book [15]. Fractographic parameters, if 
properly quantified, should be related to the fracture 
energy. Hence, analysis of these surfaces gives valuable 
information to supplement theoretical studies along 
with additional insight into failure mechanisms. 

Quantitative studies in these respects have been 
attempted in the past. For example, Schallamach cor- 
related ridge spacing on the worn surface with shear 
modulus [6, 7]. Fukahori and Andrews [5] described 
surface roughness as a function of hysteresis in the 
rubber surrounding the propagating crack. Studies by 
Gent and Pulford on torn rubber surface are notable 
[16]. A quantitative correlation between the tensile 
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strength and the distance between the tear lines and 
crack lines observed on the fracture surface of natural 
rubber has been put forward by Deuri and Bhowmick 
[17]. Thavamani and Bhowmick proposed a universal 
relationship between ridge spacing per unit frictional 
work and abradability [18]. 

However, the methods adopted by the previous 
workers are laborious. Also, when the surface mor- 
phology is not uniform, it is difficult to quantify. 
Recently, we have used an image processing technique 
to quantify worn surfaces of rubber with some statis- 
tical parameters. This method is quick and is able to 
analyse the non-uniform microfeatures on the fracture 
surface. The objective of the present study is to quant- 
itatively measure the surface roughness of a tensile 
fractured surface by using an image processing tech- 
nique as discussed below. These surfaces are shown to 
have a complicated nature and have been analysed 
with difficulty by the conventional technique. We have 
chosen photographs from two earlier papers on tensile 
rupture of rubber by Deuri and Bhowmick [17] 
and Fukahori and Andrews [5]. These are shown in 
Figs la-c  and 2a-re. 

2. Our method for texture analysis 
A 2D image is a flat object whose brightness or colour 
may vary from point to point. This variation can be 
represented mathematically by a function of two vari- 
ables x and y represented by a single real-valued 
function f(x,  y). The value of this function at a point 
will be called the gray level or brightness of the image 
at that point. Thus, a digital image can be regarded as 
an integer array. The elements of a digital image array 
are called picture elements, pixels, or pels. Texture 
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Figure 1 SEM photograph of tensile fractured surface for unaged NR gum vulcanizate (a) with precut of 0.49 mm; (b) at critical cut length; 
and (c) with precut of 1.49 mm. With kind permission from J. Mater. Sci., Chapman & Hall. (d)-(f) Digitized versions of the images shown in 
(a)-(c), respectively. 

could be defined as a structure composed of a large 
number of more or less ordered, similar elements or 
patterns. Textures are normally ranging from micro to 
macro. A micro texture appears only in a small area of 
digital image with very high gray level variations, i.e. 
significant tonal variation within a small image region. 
Micro textures can be studied effectively by using local 
properties. The quantified local properties of a micro 
texture are called the local descriptors for the texture 
or pronum. The whole textured image can be repre- 
sented globally by computing the frequency of occur- 

rences of pronums, which will be called the prospec- 
trum. The prospectrum is unique for a textured image. 

Consider an ( N . N )  gray level image f (x ,  y) where 
x, y are the two coordinates;f (x, y) can be expressed as 

f ( x ,  y) = g(x, y) + TI(x, y) 

where g(x, y) accounts for the variation due to cartesian 
coordinates in f (x ,  y) and q (x, y) is the additive noise. 
The variation g(x, y) can be approximated by using an 
appropriate set of orthogonal functions in order to 
determine a closed set of orthogonal effects [19]. 
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Figure2a Fracture surfaces of SBR in notched specimens over the range of strain rates at 24~ (a-e), 50~ if-i) and 100~ (j-m}. 
Magnification 5 x. With kind permission from J. Mater. Sci., Chapman & Hall. Fig. 2b: (a)-(m) Digitized version of the images shown in 
(a)-(m), respectively. 

In order to describe texture, let us assume that 
texture can be divided into K different classes, 
TL, L = 1,2,3, . . . ,  K, corresponding to primitives and 
their placements. Each of the classes can be character- 
ized in terms of a closed set of orthogonal  effects. 

Let 

o~ = {o~ ig (x , y ) , i , j=O,  1,2 . . . . .  N -  1} 

be the N 2 linearly independent orthogonal functions 
forming the basis for computing the orthogonal effects 
of variation due to the cartesian coordinates. A suit- 
able subset ~L of a is then chosen such that the subset 
of orthogonal effects will be sufficient to specify 

uniquely any texture element of a class TL. In the 
absence of noise, the variation due to the cartesian 
coordinate in an image containing any member  of 
a class TL can be expressed as 

9L(x,Y) = ~ ~ ~3ij~ij(x,y) (1) 
~i  j ~ q~L 

Hence, in the presence of noise, the gray level image 
f ( x ,  y) containing a member  of a class TL can be 
specified as 

f(x,y) = Z ~', [3ij~q(x,y) + ~, Z ~q~ij(x,y) 

(2) 
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o r  

f ( x ,  y) = O(x, y) + fl(x, Y) 

where 0 and rl are independent. The expected value of 
g, E(O) = g and each [3ij:aif~q*L has an expected value 
of 0 and standard deviation of r n. Further, for the 
sake of computational simplicity, the orthogonal func- 
tion a~a'S are assumed to be separable. As a result, 
Equation 2 can be rewritten as 

f (x ,y)  = ~, ~ ~ijqbi(x)r 
~ j e ~L 

+ Z (3) 
C(ij~L 

We call ~ij and [3~<qbi, ~)i)<~)j, ~j)  respectively the 
estimates of orthogonal effect and the corresponding 
mean square where < ) indicates the scalar product. 
Since in an (N .N)  image, total N z observations are 
made, there are N degrees of freedom. It is shown that 
each of N 2 [3{j<dPi, qbi)<dpj , dpj>/CY 2 is a •2 variate with 
1 degree of freedom. An estimate of error variance can be 
calculated by adding together 132j(qb, d?i)(d?j,d~j): 
aijq}~z and then dividing by the total degrees of freedom. 

For computing orthogonal effects due to the vari- 
ation in coordinates, we shall approximatef(x,  y) by 
the set of polynomials Po, P1 . . . .  [20]. The approxi- 
mation of the piecewise continuous functionf(x, y) by 
the proposed set of orthogonal polynomials can be 
obtained as follows: 

f ( x ,  y) ~ f ( x ,  y) = ~ ~', ~ijPiPj (4) 
O<~j<~t--I O<~i~t 1 

where the expansion coefficients [3 o are the desired 
orthogonal effects. The above equation can be written 
in matrix notation as follows: 

= Z Z (5) 
O<~i<nO~j<n 

where Pi is a column vector of size (n*l) consisting 
of values of the polynomials P~(x) at x = x >  
x -- x2, . . . ,  x = x,, respectively. Let 

[ M ]  = [P0, Pl, .. . ,  P,-  d 

Hence 
[A , ]  = [ M ]  [13q] [ M ]  t 

where [M] | [:M] is a point spread function as per 
the classical image formulation model. Since [M] is 
not unitary, the orthogonal effect can be computed as 

[~ij] = ( [M] t [M] )- 1 ([M] t [ f ]  [M] )([M] t [M] )-1 

(6) 

From Equation 6, the main effects resulting noise, are 
given by 

[3/*.~ = {131j :0<i+j~<2,  i ~ j }  (7) 

and the interaction effects, characterizing texture, are 

[~2 = { [ 3 i / 0 < i , j < 3 }  (8) 

The mean squares corresponding to the orthogonal 
effects can be computed as 

[Zo] = ( [ M ] t [ M ] ) - I ( [ M ] t [ f ] [ M ] )  2 

x ([M]t  [M]) - 1 (9) 
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The following two conjectures were proposed for tex- 
ture detection. 

Texture Conjecture 1 For a textured region, each in- 
teraction mean square does not estimate the same 
variance. 

Texture Conjecture 2 For a textured region, mean 
squares corresponding to some members of the set of 
main effects may estimate the same variance. 

These conjectures are applied to test whether the im- 
age region has texture or not. 

A small image region [g] of size ( N . N )  in a digital 
image is considered as a sample. The two conjectures 
are applied and the variances are tested with Nair's 
test [21] given in Appendix A. Finally, the local de- 
scriptor of the texture, pronum, is computed as per the 
algorithm given in Appendix B. Thus we have 

g4 g5 g6 ~ S3 S4 S5 

g7 g8 g9 $6 S? SS 

Gray level image Transformed one 

8 
pronum = ~ &*2 i-1 (10) 

i=1 

and 
s, = {0, 1} 

The pronum is substituted in the place of the centre 
pixel of the [g]. In the subsequent phase, adjacent 
regions are considered by sliding a (3 * 3) window and 
the same procedure is repeated. So the entire image is 
mapped into an array of pronums. The range of 
pronums considered here is (0-255). The appearance 
of different pronums and their recurrence reflect the 
variation of possible combinations of orthogonal 
effects. So different textured images will have different 
occurrences of these pronums. The frequency of occur- 
rences of these pronums is used as a global descriptor 
for the image. The plot showing the variation of the 
pronums and their frequency of occurrences is called 
the prospectrum. 

3. Experimental procedure 
Two sets of photographs (Figs la -c  and 2a m) were 
used for image analysis in this investigation. These 
photographs were generated as follows [5, 171. 

Photographs lu-e:  These were fracture surfaces of 
tensile specimen observed with the help of a Scanning 
Electron Microscope (SEM). The dumbell specimens 
of a natural rubber vulcanizate (Natural rubber, 100, 
ZnO, 5, Stearic acid 2, Sulphur, 2.5; CBS, 0.8, com- 
pound cured for 9 rain at 150~ with and without 
precut were tested at 22 ~ in a ZWICK machine 1445 
(ZWICK GmbH, Germany) according to ASTM 
D412-80. The chisel cuts of prescribed length were 
applied through the centre of the test specimen with 
the help of a special jig. The fracture surfaces were first 
sputter-coated with gold and then examined under an 
SEM. Various features of the photographs were inves- 
tigated at different magnifications. 



Photographs 2a-m: These photographs were 
obtained by Fukahori and Andrews I-5]. The test 
specimens, parallel-sided, (50 mm • 10 m m x  2 ram), 
containing an edge crack of 1 mm at the centre of the 
strip were tested at constant crosshead speeds and at 
temperatures in the range 24-100~ The fracture 
surfaces were metallized by a light-evaporated alumi- 
nium coating and examined under an optical micro- 
scope. In their analysis, photographic prints of the 
fracture surfaces were made and lines were drawn at 
_+ 45 ~ to the direction of propagation. The number of 

intersections per unit length of the lines were counted 
and each ridge was weighted on an arbitrary four 
point scale (0.5, 1, 2, 3) according to its depth. The final 
"Roughness Index" (RI) was obtained by using the 
weighted total of intersections per length. 

3.1. Parameters  c o m p u t e d  f rom the images  
All the photographs shown in Figs 1 and 2 were 
digitized in a closed chamber (with uniform illumina- 
tion) by an electronic scanner (TMC 56 GN-PULNIX 
CCD camera with 512"512 pixel resolution, focal 
lengths 16 mm and 8 mm for close and long range, 
respectively) attached to the Benchmark IPS. The 
proposed algorithm was used for analysing the images 
of various fractured surfaces shown in Figs 1 and 2. 
The prospectrums were obtained and the following 
parameters were calculated from the prospectrums. 
The magnification details of Fig. 1 are shown in the 
photographs. The magnification was 5 x for Fig. 2. 

!lIl,,ll  
M =  10.0, 7.7, 5.1 
F= 10% 

I III,I , , ,  
I i i i 

3. 1. 1. Weighted mean 
Representing the "apparent" weighted mean of the 
prospectrum by bt, the pronum by xi, the frequency of 
occurrence of the pronum xi by the function F(xi), the 
"apparent" weighted mean was computed by 

~5 F(xi) 
= ,%/7, x ~  x x, (11) 

where R ,  C is the total number of pixels in the image. 
The numbers obtained were converted into "real" 
quantities by taking into consideration the actual 
population and its magnification on the photographs. 

3. 1.2. Variance and s tandard deviat ion 
The "apparent" variance and the standard deviation 
for the prospectrums were obtained as follows: 

2ss f ( x l )  
v a r i a n c e ,  [ e = E (xi - ~t) 2 (12) 

i=o R x C  

and the standard deviation 

The "real" quantities were also calculated by taking 
into consideration the actual population and its mag- 
nification on the photographs. 
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Figure 3 (a) Prospectrums for the image shown in Fig. la at differ- 
ent levels of significance. (b) Prospectrums for the images shown in 
Figs lb, lc, 2a, 2fand 2j at M = 10, ... and F = 10% significance. 
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4. Results and discussion 
Photographs la -c  display the morphology of the frac- 
ture surface of the unaged natural rubber samples with 
different precut lengths. The zone AB represents the 
precut. In Fig. la, fracture initiates at the edges and 
propagates towards the centre, as the precut length of 
0.49 mm is much smaller than the critical cut length. 
Some tear lines connecting the rough zone and the 
precut are shown. The fracture surface at the critical cut 
length (1.21-1.30 ram) is revealed in Fig. lb. Above the 
critical value of cut length, fracture starts from the 
precut and a few tear lines running towards the edges 
are visible. The three micrographs shown in Fig. la -c  
were quantitatively analysed by digitizing to a gray 
level variation from 0 to 255. The digitized version of 
the photographs in Fig. l a -c  is also shown in Fig. 1d-f, 
respectively. The prospectrum for the image of these 
micrographs was obtained using the procedure 
outlined in Appendix B. A representative prospectrum 
for the sample la is shown in Fig. 3a at various 
significance levels of M and F. The prospectrum has 
a greater number of components and increase in 
frequencies, as M and F significance levels are relaxed, 
i.e. a sample which may not pass the conjecture at the 
5% significance level may pass at 10% or higher, 
leading to an increased frequency of occurrence of the 
pronum. Other prospectrums in Fig. 3b give similar 
variation of frequency with pronum for increasing F or 
M. The results for "real" mean, variance or standard 
deviation calculated using Equations 11 and 12 are 
reported in Table I. The "real" quantities are calculated 
from the "apparent" values by taking the magnification 
of the photographs into consideration. 

Here, the weighted mean of the prospectrum gives 
an idea about the interspace between the horizontal 
lines or the tear lines. Similarly, the variance or stan- 
dard deviation shows the spreading of these pronums 
in the prospectrum, which is related to the average 
distance between the tear lines. As F is increased at 
a constant value of M, the values of mean and vari- 
ance increase. At a constant value of F, a decrease in 
M increases these values. The standard deviation also 
follows a similar trend. The texture plates of all 
the micrographs la -c  yield similar information. As the 
precut length increases, the weighted "real" mean, 
which indicates the average distance between tear 
lines, increases. The tensile strength as reported in an 
earlier paper [17] decreases accordingly. The values 
of tensile strength at various precut lengths, and the 
distance between the tear line (DT) on the photographs 
taken from [17] are replotted in Fig. 4. The weighted 
"real" mean value, calculated in this investigation, is 
plotted against the variation of tensile strength (~b) in 
the same figure. I t  is evident from the plot that the 
weighted mean, proportional to the distance between 
the tear lines and computed by the image processing 
method, decreases linearly and follows exactly the 
same trend as the variation of DT against the tensile 
strength, ~b. However, the small difference in their 
values ( _+ 5 %) is associated with the method of calcu- 
lation. The advantage of the image processing tech- 
nique is to eliminate the laborious procedure involved 
in earlier measurements. 
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T A B L E  I Sta t is t ica l  p a r a m e t e r s  for  Fig.  1 

F i g u r e  M F " R e a l  . . . .  Rea l  . . . .  Rea l"  

m e a n  v a r i a n c e  std. dev. 

l a  10 . . . .  1 0 %  43 7 6 7 2 0  276.9 

8, ... 44  77 600 278.6 

6 . . . .  44  83 840 289.5 

10 . . . .  2 0 %  44 7 6 7 2 0  276.9 

8, .. .  44  77 608 278.6 

6, .. .  47 83 872 289.6 

10 . . . .  5 0 %  46 7 8 2 4 0  279.7 

8 . . . .  46  7 9 4 4 0  281.8 

6 . . . .  59 108 676 329.6 

l b  10, .,. 1 0 %  106 155 500 394.3 

8, .. .  106 156480  395.5 

6, .. .  107 156704  395.9 

10, .. .  2 0 %  106 155 528 394.4 

8, .. .  106 156 832 396.0 

6 . . . .  107 158672  398.3 

1 0 , . . .  5 0 %  106 155812  394.7 

8 . . . .  108 159 124 398.9 

6, .. .  117 163 424 404.3 

l c  10, .. .  1 0 %  254 2 8 5 7 1 2  534.5 

8 . . . .  255 2 8 6 4 5 2  535.2 

6 . . . .  255 286 592 535.3 

10, .. .  2 0 %  254 285 844 534.6 

8, ... 255 2 8 7 2 9 6  536.0 

6, .. .  256 288 650 537.3 

10, .. .  5 0 %  256 287 552 536.2 

8, ... 258 288 856 537.5 

6 , . . .  262 2 9 9 7 1 2  545.6 

3 , , 3 

> 

' 2 'o  ' 10 

Tens i l e  s t r e n g t h  ( M P a  ) 

:3.  
v 

2 .~ 

�9 

1 "Q 

t ~  

3'o o 

Figure 4 Plot of distance between the tear lines (DT) measured 
manually and computed in terms of the "real" mean by the pro- 
posed method versus tensile strength (~b) ((3)Present work; 
([~) Deuri and Bhowmick [17]. 

In the earlier photomicrographs, there is a regular 
pattern. However, such regularity is not observed on 
the other fracture surfaces such as those reported by 
Fukahori and Andrews [5]. The torn fractured surfa- 
ces are shown in Fig. 2a-re. It is visually apparent that 
the surface roughness varies with the strain rate and 
temperature. For SBR, the roughness decreases with 
the strain rate. The digitized version of the photo- 
graphs is also shown in Fig. 2a-re. These images were 
also analysed as per the procedure discussed earlier in 
this paper and their prospectrums obtained. Fig. 3b 
shows the representative prospectrums for the images 
shown in Fig. 2a, f and j. As expected, the prospectrum 
has a greater number of components and increase in 
frequencies, as M and F significant levels are relaxed. 



TABLE II Statistical parameters for Fig. 2 

Figure "Real" mean (pm) Roughness quantity (gm -1) 0.20 

Roughness index,  RI 

100 200 300 400 500 
I I I I I 0.20 

2a 2280 439 
2b 2680 373 
2c 2980 336 
2d 3540 283 
2e 3760 266 
2f 2740 365 
2g 2800 357 
2h 2940 340 
2i 3340 299 

1980 505 
2k 2040 490 
21 2120 471 
2m 2380 420 

Significance level M = 10, ... and F = 10% 
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Figure 5 Plots of the "roughness quantity" and "roughness index" 
as a function of strain rate for the images shown in Fig. 2. ([q) 
100~ Fukahori and Andrews [hJ; (O) 100~ present work; 
( I )  24 ~ Fukahori and Andrews [5]; (0) 24 ~ present work. 
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Figure 6 Plots of "roughness quantity" and "roughness index" 
versus crack velocity for Fig. 2a e. (�9 Present work; ([]) Fukahori 
and Andrews [53. �9 

The weighted mean is computed from the prospec- 
trums and the "roughness quantity" which has been 
taken as inverse of the weighted real mean has been 
computed. Conceptually, the weighted "real" mean is 
inversely proportional to the "roughness index" dis- 
cussed in the paper by Fukahori and Andrews [5]. 
This is for the following reason: In the "tolysurf" 
method, a very light step is assigned an arbitrary value 
of 0.5. Hence a surface having more such light steps 
will have a low roughness index, although the surface 
is more textured, giving a higher mean value. Sim- 
ilarly, a heavy step is assigned a weight of 3.0. Even 
a few such steps will give rise to larger "roughness 
index", whereas the same surface will have less tex- 
tured information, and hence a lower mean. Various 
statistical parameters and the "roughness quantity" 

0,18 

5 
'~ 0,16 

0 . 1 4  

I 

0.12 - 

0.10 I 

).18 
I ~ :  

5 
0.16 

. 2  

0.14 �9 

: :E  

0.12 

I I I I I .10 
100 200 300 400 500 

Roughness quant i ty  ( ~Lm -1 ) 

Figure 7 Plots of hysteresis ratio (h) versus "roughness quantity" 
and "roughness index" for Fig. 2a-e. (O) Present work; ([q) 
Fukahori and Andrews [5]. 

computed from the real mean are reported in Table II. 
The data for the roughness index at various strain 
rates and crack velocities, hysteresis ratio of samples 
tested at different strain rates and temperatures were 
collected from [5]. Figs 5, 6 and 7 are drawn by taking 
the "roughness quantity" (RQ) computed from the 
weighted mean with various other earlier parameters 
- crack velocity (~), strain rate (~) and hysteresis 
ratio (h). These were then compared with the trend 
in Fukahori and Andrew's paper [5]. It is interesting 
to note that in Figs 5 and 6, the trend in results is 
similar. For example, "roughness quantity" is linearly 
proportional to the crack velocity and the gradient of 
the lines (our work and earlier work) is the same. 
However the plot of the hysteresis ratio against the 
"roughness quantity" shows some difference. This 
is because the roughness index calculated earlier was 
obtained by using the "tolysurf" method which has 
used "arbitrary" numbers for the description of the 
intensity of the point. But the present method is com- 
puterized and fast, requiring no human intervention. 

The straight lines shown in Figs 4, 6 and 7 for 
the present work could be described by the following 
empirical relationships, respectively: 

1og(DT) = 3.6 - 0 . 0 7 5 0  b (13) 

log(RQ) = 2.185 + 0.0951og(~) (14) 

= 0.2646 - 3.59x 10-r (15) 

Equation 13 is the same as that derived manually by 
Deuri and Bhowmick [17]. 

5. C o n c l u s i o n s  
The statistical design of this experiments' approach 
has been effectively used for quantification of the 
roughness of fractured rubber surfaces. The "textured" 
surfaces have been represented in terms of a closed set 
of orthogonal polynomials and the variation due to 
the cartesian coordinates has been measured in terms 
of main and interaction effects. The main effects are 
those in which one coordinate is varying while the 
other remains constant, whereas the interaction effects 
are the effects due to the variation of both coordinates. 
Conjectures have been proposed for quantifying the 
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texture present. In tensile fractured surfaces of NR Step 9 
vulcanizate with a precut, the statistical "real" weighted 
mean computed from the prospectrum is proportional 
to the distance between the tear lines. The results are in 
good accord with those published earlier. Further, this 
method has also been applied for quantitative analysis 
of fractured surfaces obtained by Fukahori and 
Andrews [51. The weighted real mean computed from Step 10 
the prospectrum is inversely proportional to the 
roughness index. The "roughness quantity" computed Step 11 
from the mean has been plotted against the variation of 
crack velocity, strain rate and hysteresis ratio as done in Step 12 
their work. A similar trend between various parameters 
has been obtained. Using the image processing 
technique proposed, a large amount of laborious 
procedure in quantification can be easily avoided. 

Appendix 1. Nair's criterion 
Nair's test for checking the Homogeneity of variances Step 13 
is given below. 

Let Val, Vae , . . .  ,Yak be the set of variances with 
ul, u2, . . . ,  uk degrees of freedom, respectively. Step 14 

The average variance 

i ~, Step 15 
/)av "~- -- ~ Uai't)g 

I) i =  1 Step 16  

and the total degrees of freedom 
k End 

D : 2 Ui 
/=1 

then the criterion for computing the divergence 
among variances is 

k 

Ma = ulnvav - ~ ugln(va,) 
/=1 

The values of M 1 for different degrees of freedom and 
for different percentage significance levels are given 
in [21]. 

Appendix  2. Algorithm 
Input Gray level image G of size ROW*COL.  [ ] 
denotes the matrix and the suffix denotes the elements 
of the matrix. Let [M] be the polynomial operator 
and [ f ]  be a (3*3) image region extracted from G. 
PROARR holds the pronums obtained from G. 
Output Prospectrum, i.e. frequency of occurrences of 
pronums (at most 256 different pronums may appear). 

Begin 
Step 1 Compute [W] = [ M ] t [ M ]  where 

1 - 1  1 

[M] = 1 0 - 2 

1 1 1 
Step 2 Repeat thru step 15 for k = 2 to ROW-1 
Step 3 Repeat thru step 14 for 1 = 2 to COL-1 
Step 4 Extract a small region [ f ]  from G centred at (k, 1) 
Step 5 Compute [13'1 = [ M ] t [ f ]  [ M ]  
Step 6 Compute 

[13] = ( [ M ] t [ M ] ) -  ~ ( [ M ] t [ f ] [ M ] )  
( [ M ] t [ M ] )  -a = [ ~ ' ] / ( [ W ] i , i , [ W ] j 4 )  

Step 7 Compute [Z] = ( [ fY] , , j ) z / ( [W] i , i * [W] j4 )  
Step 8 A = {Zol, Zo2, Zlo, Z2o} are variances due to 

the main effects and B = {Z11, Z12, Z21, Z22} 
are variances due to the interaction effects. 
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Perform Nair's test for sets A and B. If the test 
fails, pronum = - 1 ,  indicating there is no 
texture. Go to step 14. (While performing 
Nair's test, if all four variances do not pass the 
test, then eliminate one variance at a time and 
perform the test again. In the worst case, there 
must be two variances present.) 
Let set V _~ A have variance terms that pass 
Nair's Test and 11 V II be the cardinality of set V. 
Compute the mean square error variance, 
msv = (Zzij~ v Zij)/ll V IL . 
Perform the variance ratio test [22] (F ratio 
test), with numerator as one of the variances 
from {A + B - V} and msv as the denomin- 
ator, against the chosen significance level. If 
the test is significant, the corresponding posi- 
tion pg of the numerator in the image region 
[ f ]  is marked as 1, otherwise as 0. 
Compute the pronum for the image region 

~ 8  . " , i -  l [ f ]  as: pronum = Lg= 1Pg z pg = 1 if the 
ith position is 1; otherwise 0. 
Store the pronum in PROARR[k][ / ]  and 
increment I by 1. 
Increment k by 1. 
Compute the frequency of occurrences of 
pronums from PROARR. 
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